新闻动态
联系我们
联系人:丁经理
电话:17784210768(微信同号)
手机:QQ:1411184862
地址:重庆市北碚区歇马镇缙善路2号附17号
邮箱:cqgdyq@163.com
光场的获取方式
目前获取光场的手段主要分为以下3种:
1)微透镜阵列。
这是最常用的光场获取方式,实现方式也最简单。在普通成像系统的一次像面处插入一个微透镜阵列,每个微透镜元记录的光线对应相同位置不同视角的场景图像,从而得到一个四维光场。微透镜阵列所在平面可看作图1 中的u-v 面,探测器面可看作x-y面。Adelson 的全光场相机,Ng 的手持光场相机,Levoy 的光场显微镜( LFM),Fife 的光场“芯片”以及Georgiev 的Plenoptic Camera 2. 0等,都是采用微透镜阵列来获取四维光场数据,只是在u-v面和x-y面的处理上略有区别,从而实现不同的功能。其中,Adobe 公司的光场相机,采用透镜和棱镜阵列获取光场数据,相比传统的微透镜阵列方式,可移植性更强。它将透镜和棱镜集成为一个光学元件,外接在普通相机上即可实现,具有较高的图像分辨率; 但是由于镜头外接,会引入新的像差。
2)相机阵列。
它是指通过相机在空间的一定排布来同时抓取一系列视角略有差别的图像,从而重构出光场数据的方法。比如斯坦福大学的128 相机阵列,采用不同空间排布,能够获得一些异于普通相机的特性,包括空间分辨率、动态范围、景深、帧速、光谱敏感性等。其中大尺度空间排布的相机阵列主要用于合成孔径成像实现“透视”监测,或通过拼接实现大视角全景成像,而紧密排布型则主要用于获取高性能的动态场景。还有Isaksen 的单相机扫描系统,是通过相机在场景中特定移动获取不同视角的图像,它构建的初衷在于研究光场数据的动态参量化。此外,比较成功的样机还有MIT 的64 相机阵列,卡耐基- 梅隆大学的“3D Room”等。
3)掩膜及其他。
其共同点在于都是对相机的孔径做相应处理,都能重构出光场数据。典型的有Veeraraghavan 的光场相机,通过在普通相机光路中插入一个掩膜实现。其获取的图像看似与普通相机类似,但经过变换到频域后发现,其频域呈规律性分布,与光场数据的频域特性类似,也能处理得到四维光场信息。它的优点在于掩膜是非折射元件,不管是从后期成像质量还是硬件方面,都比微透镜阵列更容易实现。可编程孔径相机插入的是一个特殊的遮光板,它可以通过编码来提高图像的空间分辨率和景深,也可以重构出四维光场。环形孔径相机,结构比较复杂,须做退卷积处理,可达到较高的图像分辨率。
1)微透镜阵列。
这是最常用的光场获取方式,实现方式也最简单。在普通成像系统的一次像面处插入一个微透镜阵列,每个微透镜元记录的光线对应相同位置不同视角的场景图像,从而得到一个四维光场。微透镜阵列所在平面可看作图1 中的u-v 面,探测器面可看作x-y面。Adelson 的全光场相机,Ng 的手持光场相机,Levoy 的光场显微镜( LFM),Fife 的光场“芯片”以及Georgiev 的Plenoptic Camera 2. 0等,都是采用微透镜阵列来获取四维光场数据,只是在u-v面和x-y面的处理上略有区别,从而实现不同的功能。其中,Adobe 公司的光场相机,采用透镜和棱镜阵列获取光场数据,相比传统的微透镜阵列方式,可移植性更强。它将透镜和棱镜集成为一个光学元件,外接在普通相机上即可实现,具有较高的图像分辨率; 但是由于镜头外接,会引入新的像差。
2)相机阵列。
它是指通过相机在空间的一定排布来同时抓取一系列视角略有差别的图像,从而重构出光场数据的方法。比如斯坦福大学的128 相机阵列,采用不同空间排布,能够获得一些异于普通相机的特性,包括空间分辨率、动态范围、景深、帧速、光谱敏感性等。其中大尺度空间排布的相机阵列主要用于合成孔径成像实现“透视”监测,或通过拼接实现大视角全景成像,而紧密排布型则主要用于获取高性能的动态场景。还有Isaksen 的单相机扫描系统,是通过相机在场景中特定移动获取不同视角的图像,它构建的初衷在于研究光场数据的动态参量化。此外,比较成功的样机还有MIT 的64 相机阵列,卡耐基- 梅隆大学的“3D Room”等。
3)掩膜及其他。
其共同点在于都是对相机的孔径做相应处理,都能重构出光场数据。典型的有Veeraraghavan 的光场相机,通过在普通相机光路中插入一个掩膜实现。其获取的图像看似与普通相机类似,但经过变换到频域后发现,其频域呈规律性分布,与光场数据的频域特性类似,也能处理得到四维光场信息。它的优点在于掩膜是非折射元件,不管是从后期成像质量还是硬件方面,都比微透镜阵列更容易实现。可编程孔径相机插入的是一个特殊的遮光板,它可以通过编码来提高图像的空间分辨率和景深,也可以重构出四维光场。环形孔径相机,结构比较复杂,须做退卷积处理,可达到较高的图像分辨率。